Supersingular Isogeny Elliptic Curve Cryptography

Before we start, let's be clear: this is an experiment to demo isogeny-based DH, it is not secure or fast (at least it wouldn't be with reasonably-sized fields)!

We pick a supersingular curve over a small prime field:

```
lA, lB = 2, 3
eA, eB = 6, 7
p = lA ^ eA * lB ^ eB - 1 # This is conveniently a large-ish curve
for a demo (comically small for crypto, though!); this structure
doesn't matter much because we do math over GF(p), not GF(p^2)
assert p.is_prime()
assert p % 4 == 3 # Necessary for below curve to be supersingular.
```

```
GF(p^2)
    Finite Field in z2 of size 139967^2
```

```
k = GF(p) # Note; not using GF(p^2) because of a limitation in Sage
```

k = GF(p) \# Note; not using GF(p^2) because of a limitation in Sage
E = EllipticCurve(k, [1, 0])
E = EllipticCurve(k, [1, 0])
E

```
E
```

Elliptic Curve defined by $\mathrm{y}^{\wedge} 2=\mathrm{x}^{\wedge} 3+\mathrm{x}$ over Finite Field of size 139967

Elliptic curves of this form with a prime congruent to 3 mod 4 will incidentally always be supersingular, but Sage will confirm that:

```
E.is_supersingular()
    True
n_points = E.count_points()
n_points
```

 139968
 E.j_invariant()
1728

Let's pick 4 random unique points, fixed as part of the protocol:

```
points = []
while len(points) != 4:
    p = E.random_point()
    if p not in points:
        points.append(p)
```

```
PA, PB, QA, QB = points
PA, PB, QA, QB
    ((129731 : 133310 : 1),
        (89516 : 39263 : 1),
        (75830 : 10281 : 1),
        (4425 : 63959 : 1))
```

Alice computes her secret numbers, from which she computes a point RA, which defines the kernel of her isogeny:

```
mA, nA = 123, 525
RA = mA * PA + nA * QA
print RA
phiA = E.isogeny(RA)
EA = phiA.codomain()
    (134960 : 51025 : 1)
```

Sage has convenient tools for proving that this is an isogeny:

```
E.is_isogenous(EA)
```

True

Alice sends her public key (consisting of the isogenous elliptic curve and the two base points for Bob under that curve) to Bob. I use the symbols phiA_PB and phiA_QB here to clarify that Bob just sees those values; he does not actually see the isogeny itself.

```
EA, phiA_PB, phiA_QB = EA, phiA(PB), phiA(QB)
EA, phiA_PB, phiA_QB
    (Elliptic Curve defined by y^2 = x^3 + 130855*x + 32368 over Finit
    Field of size 139967,
        (651 : 40521 : 1),
        (1728 : 0 : 1))
```

Bob does the same thing:

```
# Bob does the same thing
mB, nB = 812, 580
RB = mB * PB + nB * QB
print RB
# phiB is a function from points on E to points on EB
phiB = E.isogeny(RB)
print phiB
EB = phiB.codomain()
print EB
```

(36575 : 8140 : 1)
Isogeny of degree 34992 from Elliptic Curve defined by y^2 = x^3 † over Finite Field of size 139967 to Elliptic Curve defined by y^2
x^3 + 115910*x + 38819 over Finite Field of size 139967
Elliptic Curve defined by $\mathrm{y}^{\wedge} 2=\mathrm{x}^{\wedge} 3+115910 * \mathrm{x}+38819$ over Finit ϵ Field of size 139967

```
E.is_isogenous(EB)
```

True

```
# Bob sends to Alice:
EB, phiB_PA, phiB_QA = EB, phiB(PA), phiB(QA)
EB, phiB_PA, phiB_QA
    (Elliptic Curve defined by y^2 = x^3 + 115910*x + 38819 over Finit
    Field of size 139967,
        (17496 : 82589 : 1),
        (17496 : 57378 : 1))
```

```
# Alice computes the shared secret:
SBA = mA * phiB_PA + nA * phiB_QA
print SBA
phiBA = EB.isogeny(SBA)
print phiBA
KA = phiBA.codomain().j_invariant()
```

 (34992 : 0 : 1)
 Isogeny of degree 2 from Elliptic Curve defined by \(y^{\wedge} 2=x^{\wedge} 3+\)
 115910*x + 38819 over Finite Field of size 139967 to Elliptic Cur
 defined by \(y^{\wedge} 2=x^{\wedge} 3+104975 * x\) over Finite Field of size 139967
    ```
# Bob computes the shared secret:
SAB = mB * phiA_PB + nB * phiA_QB
print SAB
phiAB = EA.isogeny(SAB)
print phiB
KB = phiAB.codomain().j_invariant()
```

 (651 : 99446 : 1)
 Isogeny of degree 34992 from Elliptic Curve defined by \(y^{\wedge} 2=x^{\wedge} 3\) -
 over Finite Field of size 139967 to Elliptic Curve defined by \(\mathrm{y}^{\wedge} 2\)
 x^3 + 115910*x + 38819 over Finite Field of size 139967
 $K A==K B$
True

